

TRENCH SHIELD TABULATED DATA

A COPY OF THIS SHEET MUST ACCOMPANY EACH CORRESPONDING TRENCH SHIELD AT EVERY JOB SITE

MODEL NUMBER: TSR PRO-4 820 KE

SOIL	MAX DEPTH	PSF
TYPE A	46 - FT	
TYPE B	27 - FT	*1320
TYPE C60	22 - FT	
TYPE C80	17 - FT	

*Shield Capacity based on C60 soil at bottom of the excavation.

SERIAL NUMBER:

30962

DATE MANUFACTURED:

03/27/15

SHIELD WEIGHT:

9,664 - LB

8 - FT X 20 - FT

SHIELD SIZE:

SPREADER SIZE:

8 IN SCH 80

MAX SPREADER LENGTH:

20 - FT

LIMITATIONS:

DEPTH

IIII 24" MAX.

PRO-TEC EOUP

No. 69082 OF CALIFORN 4/2/15

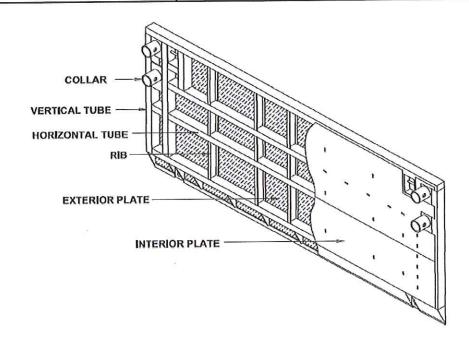
- Soil above shield must be sloped according to OSHA Subpart P. Slope must begin no less than 18" below the top of shield.
- Shield may be suspended no more than 2 feet above bottom of the trench and only if there is no possible loss of soil from behind or below bottom of shield.
- A minimum of 2 spreader pipes are required on each end with manufacturer approved 2-in diameter pins and keepers.
- Repairs and modifications shall be approved in writing by the manufacturer and a registered professional engineer.
- Shields may be stacked as long as each is rated to the depth it is used and manufacturer approved stack connections are utilized.
- Surcharge loads have not been included in the above depth ratings. The allowable working depth of the shield must be reduced to account for all surcharge loading which occurs adjacent to the trench. (Adjacent is defined as within a distance equal to the depth of the trench.)
- The Soil Types A, B, and C-80 are as defined in the OSHA Standard. Soil Type C - 60 is a moist, cohesive soil or a moist dense granular soil, which is not flowing or submerged and has an Equivalent Fluid Pressure (EFP) of 60 PSF per foot of depth. The competent person must monitor the excavation for signs of deterioration that may alter soil pressures and produce the Soil Type C - 80 condition. Such signs are indicated by, but not limited to, freely seeping water or flowing soil entering the excavation around or below the
- PRO-TEC trench shields have been designed by a registered professional engineer as required to comply with Occupational Safety and Health Administration (OSHA) standard 29 CFR Part 1926, Subpart P.
- Maximum depths are based on shields being in structurally sound condition. Trench Shields should be inspected prior to each use for any damage or deterioration. If a shield has sustained major structural damage or permanent deformation of a structural member or connection, the Tabulated Data is void until repairs are made as specified by a registered professional engineer.

TRINITY SHORING PRODUCTS, INC.

A TRIMITY MINING & CONSTRUCTION EQUIPMENT, INC. COMPANY

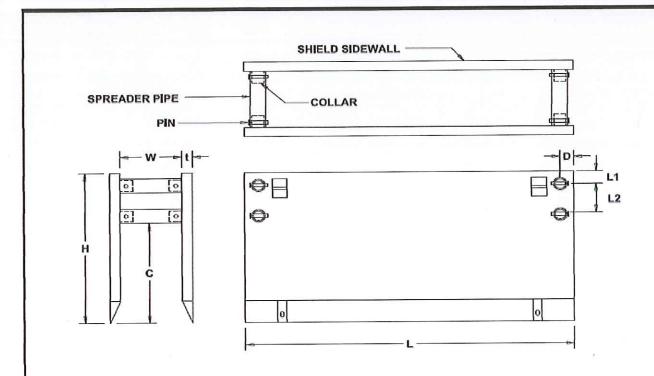
JN 17929

Usage of trench shields other than specified could cause failure or cave-ins resulting in serious injury or death.



Model: TSR PRO-4 820 KE

Job Number: 17929 Date: 3/27/2015


Trench Shields are designed in accordance with the AISC Manual of Steel Construction - 13th edition utilizing Allowable Stress Design and the following modifications:

Subject	Description	Reference
	1.33 increase for	NBS / NIOSH 82 - 06 - M
Allowable Stresses	wall elements for	ASCE Geotechnical Special
	Trench Shields	Publication No. 74
	Reduce bending	NBS / NIOSH 82 - 06 - M
Moment Reduction	moments derived by	ASCE Geotechnical Special
	soil pressure by 0.80	Publication No. 74
Effective Flange Width (be) for Horizontal and Vertical sections.	Maximum width to thickness ratios for compression in wall elements:	Manufacturer's testing data
	b/t < 150	

Typical Trench Shield Structural Elements

Trench Shield Dimensions

Trench Shield Geometry:

Height of Shield:

H = 8 ft

Pin Diameter:

d = 2. in

Length of Shield:

L = 20 ft

Spreader Size:

8 SCHD 80

Spreader Width:

W = 20 ft

Dimension D:

D = 8. in

Wall Thickness:

VV - 20 IL

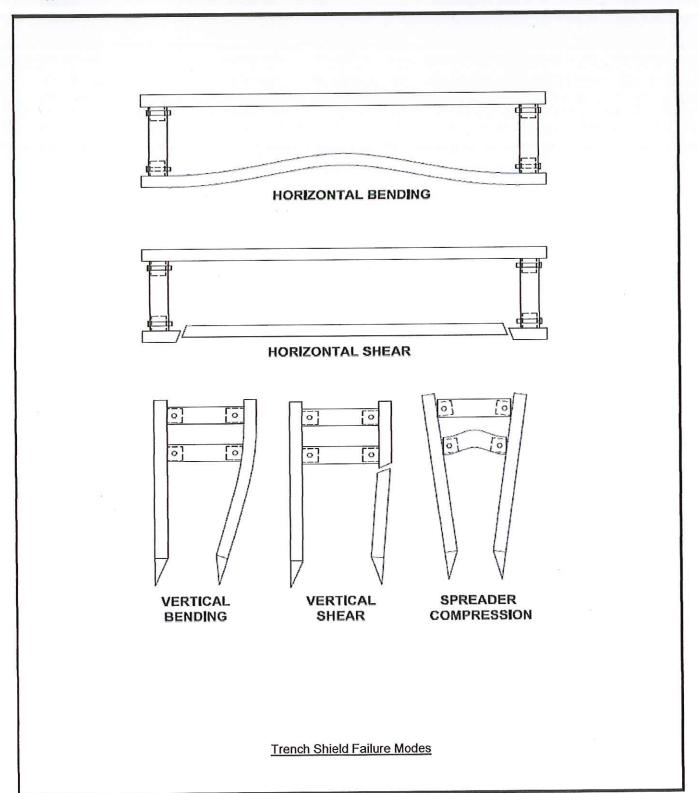
Difficiolori D.

L1 = 8.5 in

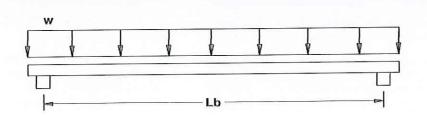
Pipe Clearance:

t = 4. in C = 65. in Dimension L1: Dimension L2:

L2 = 18.5 in


Trench Shield Ratings:

		Depth	Ratings	
Shield Capacity	A25	B45	C60	C80
(psf)	(ft)	(ft)	(ft)	(ft)
1,054	46	27	22	17


Estimated Trench Weight:

9,664 lb

Check Horizontal Bending:

Material and Geometric Properties:

Fy = 50. ksi

S = 88.51 in³ -----> (See Section Properties Calculations)

Required Flexural Strength:

 $Mr = (0.80)(w)(Lb)^2 / 8$

w = (CAPACITY / 1000)(H)

w = (1,054 / 1000)(8) = 8.43 kips / ft

Lb = L - 2(D) / 12 = 20 - 2(8) / 12 = 18.67 ft

 $Mr = (0.80)(8.43)(18.67)^2 / 8 = 293.71 \text{ kip-ft}$

Available Flexural Strength:

Mn = (Fy)(S)(1/12) = 368.79 kip-ft

(Eqn. F12-1)

 $\Omega = 1.67$ -----> (Factor of Safety for Flexure)

 $Ma = (1.33)(Mn / \Omega) = 293.71 \text{ kip-ft} = Mr$

(o.k.)

Check Horizontal Shear:

Material and Geometric Properties:

Fy = 50. ksi

Aw = 15.5 in^2 -----> (See Section Properties Calculations)

Required Shear Strength:

Vr = (w)(L) / 2

w = (CAPACITY / 1000)(H)

w = (1,054 / 1000)(8) = 8.43 kips / ft

Vr =(8.43)(20.) / 2 = 84.29 kips

Available Shear Strength:

Vn = (0.60)(Fy)(Aw) = 465. kips

(Eqn. G3-1)

 Ω = 1.67 ----> (Factor of Safety for Shear)

 $Va = (1.33)(Vn / \Omega) = 370.33 \text{ kips} > Vr$

(o.k.)

Check Vertical Bending:

Material and Geometric Properties:

Fy = 50. ksi

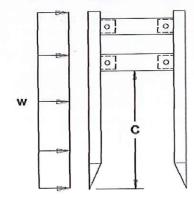
S = 39.11 in³ ----> (See Section Properties Calculations)

Required Flexural Strength:

 $Mr = (0.80)(w)(C / 12)^2 / 2$

w = (CAPACITY / 1000)(L / 2)

w = (1054 / 1000)(20 / 2) = 10.54 kips / ft


C = 65 in

 $Mr = (0.80)(10.54)(65. / 12)^2 2 / 2 = 123.66 \text{ kip-ft}$

Available Flexural Strength:

 Ω = 1.67 -----> (Factor of Safety for Flexure)

 $Ma = (1.33)(Mn / \Omega) = 129.77 \text{ kip-ft} > Mr$

Mn = (Fy)(S) = 162.94 kip-ft

(o.k.)

(Eqn. F12-1)

Check Vertical Shear:

Material and Geometric Properties:

Fy = 50. ksi

Aw = 3.5 in^2 ----> (See Section Properties Calculations)

Required Shear Strength:

Vr = (w)(C) / 2

W = (CAPACITY / 1000)(H)

W = (1,054 / 1000)(8) = 10.54 kips / ft

Vr =(10.54)(20.) / 2 = 57.07 kips

Available Shear Strength:

Vn = (0.60)(Fy)(Aw) = 105. kips

(Eqn. G3-1)

 Ω = 1.67 -----> (Factor of Safety for Shear)

(o.k.) $Va = (1.33)(Vn / \Omega) = 83.62 \text{ kips} > Vr$

Check Spreader Pipe for Combined Forces:

Material and Geometric Properties:

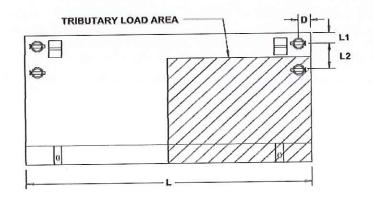
8 SCHD 80

Fy = 35. ksi

E = 29,000 ksi

Weight = 43.4 lb / ft

 $Ag = 11.9 \text{ in } ^2$


 $Z = 31 \text{ in } ^3$

 $I = 99.39 \text{ in}^4$

r = 2.89 in

L = W = 20. ft

K = 1

Required Compressive Strength:

Pr = (CAPACITY / 1000)((H)(12) - L1 - L2 / 2) / 12)(L / 2)

Pr = (1,054 / 1000)((8)(12) - 8.5 - 18.5 / 2) / 12)(20) / 2 = 68.71 kips

Required Flexural Strength:

Mr = (Weight / 1000)(L)^2 / 8

 $Mr = (43.4 / 1000)(20)^2 / 8 = 2.17 \text{ kip - ft}$

Determine Moment Magnification:

 $B1 = Cm /(1 - (\alpha)(Pr / Pe1))$

Cm = 1 and $\alpha = 1.6$

Pe1 = $\pi^2(E)(I) / (KL)^2 = 493.88 \text{ ksi}$

B1 = 2.11

(Section C2.1b)

(Eqn. C2-2)

(Eqn. C2-5)

Magnified Required Flexural Strength:

Mrt = (B1)(Mr) = 4.57 kip -ft

(Eqn. C2-1a)

Available Compressive Strength:

(K)(L) / r = (1.0)(20)(12) / 2.89 = 83.04

Fe = $\pi^2(E) / ((K)(L) / r)^2 = 41.5 \text{ ksi}$

 $(K)(L) / r < 4.71(E / Fy)^0.5 = 135.58$

 $Fcr = (0.658 ^ (Fy / Fe))(Fy) = 24.59 ksi$

Pn = (Fcr)(Ag) = 292.63 kips

 $\Omega = 1.67$ -----> (Factor of Safety for Compression)

Pa = Pn / Ω = 175.23 kips

(Eqn. E3-4)

(Use Eqn. E3-2)

(Eqn. E3-2)

(Eqn. E3-1)

Check Spreader Pipe for Combined Forces cont.:

Available Flexural Strength:

(Eqn. F2-1)

$$Ma = Mn / \Omega = 54.14 \text{ kip-ft}$$

Unity Check:

$$Pr/Pa = .39 > 0.20$$

(Use Eqn. H1-1a) (o.k.)

Check Spreader Connection:

Design connection for an axial tensile force of 50% of the required compressive strength of the spreader pipe.

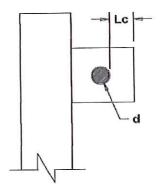
(Section J1.4b)

Required Tensile Strength of the connection:

$$Rr = (0.5)(Pr) = 34.35 \text{ kips}$$

Material and Geometric Properties of Pin:

Fu = 60. ksi


d = 2. in

 $Ap = 3.14 in^2$

Fu = 58. ksi

t = .5 in

Available Pin Shear Strength:

$$Fv = 0.50(Fu) = 30. \text{ ksi}$$

(Table J3.2)

m = 2 ----> (Number of Shear planes)

Rnp = (m)(Ap)(Fv) = 188.5 kips

 Ω = 2. ----> (Factor of Safety for Connections)

Rap = Rnp / Ω = 94.25 kips > Rr

(o.k.)

Check Spreader Connection Cont.:

Determine Required Clear Distance based on Bearing Strength:

Rn = (m)(1.5)(Lc)(t)(Fu)m = 2 -----> (Number of Shear planes) (Eqn. J3-6b)

 $\Omega = 2$. -----> (Factor of Safety for Connections)

 $Rn = (\Omega)(Rr)$

Solve for Minimum Clear Distance (Lc):

 $Lc = (\Omega)(Rr) / (m)(1.5)(t)(Fu)$

Lc = .79 in

Determine Required Clear Distance based on Shear Rupture:

Rn = (m)(0.6)(Fu)(Asf)

(Eqn. J4-4)

Asf = (2)(t)(a + d/2)

m = 2 -----> (Number of Shear planes)

 $\Omega = 2$. -----> (Factor of Safety for Connections)

 $Rn = (\Omega)(Rr)$

Solve for Minimum Edge Distance (a):

 $Lc = (\Omega(Rr) / ((2)(t)(m)(0.6)(Fu)) - d/2$

Lc = -.01 in

Determine Shield Deflection:

Material and Geometric Properties:

E = 29,000 ksi

I = 198.53 in^4 (Horizontal) -----> (See Section Properties Calculations)

I = 85.55 in^4 (Vertical) -----> (See Section Properties Calculations)

Calculate Horizontal Deflection:

w = (CAPACITY / 1000)(H) / 12 = (1,054 / 1000)(8) / 12 = .7 Kips / in

Lb = L - 2(D) / 12 = 20 - 2(8) / 12 = 18.67 ft

 $\Delta h = 5w((Lb)(12))^4 / 384(E)(I) = 5(.7)((18.67(12))^4 / 384(29,000.)(198.53) = 4.$ in

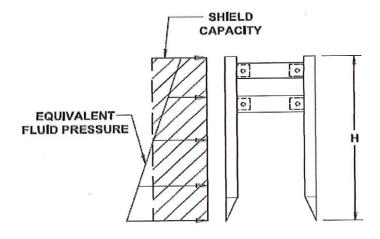
Calculate Vertical Deflection:

w = (CAPACITY / 1000)(L / 2) = 1054 / 1000)(20 / 2) = .88 kips / in

C = 65 in

 $\Delta V = W(C)^4 / 8(E)(I) = (.88)((65.)^4 / 8(29,000.)(85.55) = .79 in$

Total Deflection:


 $\Delta = \Delta h + \Delta v = 4.79$ in

Determine Depth Ratings:

Calculate shield depth ratings based on soils with the following equivalent fluid pressures:

Soil Type	EFP (psf / ft of depth)
Α	25
В	45
C60	60
C80	80

A25 Soil:	Depth Rating = CAPACITY / EFP + H / 2 = 1,054 / 25 + 8. / 2 = 46 ft
B45 Soil:	Depth Rating = CAPACITY / EFP + H / 2 = 1,054 / 45 + 8. / 2 = 27 ft
C60 Soil:	Depth Rating = CAPACITY / EFP + H / 2 = 1,054 / 60 + 8. / 2 = 22 ft
C80 Soil:	Depth Rating = CAPACITY / EFP + H / 2 = 1,054 / 80 + 8. / 2 = 17 ft

Comments:

Capacity at bottom of shield in C60 soil:

CAPACITY(C60) = 22(60) = 1320 psf

Trinity CALCULATION OF SECTION PROPERTIES

JN 17929 TSR PRO-4 8 KE SECTION PROPERTIES

HORIZONTAL	SECTION
------------	---------

ELEMENT	DESCRIPTION	Α	х	Ax	ly	dx	Adx^2
1	(2)TS 4 X 2 X 1/4	5.180	2.188	11.331	8.220	-0.055	0.016
2	TS 4 X 6 X 3/8	6.580	2.188	14.394	15.600	-0.055	0.020
3	TS 4 X 6 X 3/8	6.580	2.188	14.394	15.600	-0.055	0.020
4	TS 4 X 6 X 3/16	3.520	2.188	7.700	9.320	-0.055	0.011
5	0.1875 Plate x 94	17.625	0.094	1.652	0.052	2.038	73.223
6	0.1875 Plate x 85.75	16.078	4.281	68.834	0.047	-2.149	74.269
7	Triangle 8.25 x 4.1875	17.273	1.583	27.350	16.827	0.549	5.200
8	Triangle 7.880597 x 4	-15.761	1.521	-23.970	-14.010	0.611	-5.887
		57.075		121 685	51.656		146.87

SECTION PR	OPERTIES
Depth (in)	4.375
Area (in^2)	57.075
x1 (in)	2.132
x2 (in)	2.243
ly Total (in^4)	198.528
Sy1 (in^3)	93.118
Sy2 (in^3)	88.510
Aw (in^2)	15.500

VERTICAL SECTION

ELEMENT	DESCRIPTION	Α	x	Ax	ly	dx	Adx^2
1	TS 4 X 4 X 1/4	3.590	2.188	7.853	8.220	0.000	0.000
2	TS 4 X 4 X 3/16	2.770	2.188	6.059	6.590	0.000	0.000
3	0.1875 Plate x 43	8.063	0.094	0.756	0.024	2.094	35.344
4	0.1875 Plate x 43	8.063	4.281	34.518	0.024	-2.094	35.344
	*****	22.485		49.186	14.857		70.689

SECTION PRO	OPERTIES
Depth (in)	4.375
Area (in^2)	22.485
x1 (in)	2.187
x2 (in)	2.188
ly Total (in^4)	85.546
Sy1 (in^3)	39.107
Sy2 (in^3)	39.107
Aw (in^2)	3.500